Формула площади прямоугольного треугольника

Треугольник образуется соединением отрезками трех точек, не лежащих на одной прямой. При этом точки называются вершинами треугольника, а отрезки - его сторонами. Если один из углов прямой, то треугольник - прямоугольный.

Прямоугольным треугольником называется треугольник, у которого один из углов равняется 90°. Его площадь можно найти, если известны два катета. Площадь прямоугольного треугольника равна половине произведения катетов треугольника

Для вычисления площади прямоугольного треугольника ABCABC используются следующие формулы:

S=12ab S = \frac{1}{2} \cdot a \cdot b

S=12chc S = \frac{1}{2} \cdot c \cdot h_{c}

S=12a2tg(β) S = \frac{1}{2} \cdot a^{2} \cdot tg(\beta)

S=12b2tg(α) S = \frac{1}{2} \cdot b^{2} \cdot tg(\alpha)
Многоугольник, который имеет три вершины и три стороны, называется треугольником.
Площадь геометрической фигуры, или площадь фигуры - часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади фигуры выражается числом заключающихся в него квадратных единиц.
Читать по теме
Интересные статьи