Формула площади прямоугольного треугольника

Площадь прямоугольного треугольника равна половине произведения катетов треугольника

Треугольник образуется соединением отрезками трех точек, не лежащих на одной прямой. При этом точки называются вершинами треугольника, а отрезки - его сторонами. Если один из углов прямой, то треугольник - прямоугольный.

Прямоугольным треугольником называется треугольник, у которого один из углов равняется 90°. Его площадь можно найти, если известны два катета. Площадь прямоугольного треугольника равна половине произведения катетов треугольника

Для вычисления площади прямоугольного треугольника \(ABC\) используются следующие формулы:

\[ S = \frac{1}{2} \cdot a \cdot b \]

\[ S = \frac{1}{2} \cdot c \cdot h_{c} \]

\[ S = \frac{1}{2} \cdot a^{2} \cdot tg(\beta) \]

\[ S = \frac{1}{2} \cdot b^{2} \cdot tg(\alpha) \]
Многоугольник, который имеет три вершины и три стороны, называется треугольником.

Не можешь написать работу сам?

Доверь её нашим специалистам

50 000авторов
от 100 р.стоимость заказа
2 часамин. срок
Узнать стоимость

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: