Умножение вектора на число

Произведением вектора u≠0 на число λ≠0 называется вектор w, модуль которого равен |λ||u|, направление которого совпадает с вектором u при λ>0 и противоположно ему при λ<0.

Векторы: \( \mathbf{u} \), \( \mathbf{v} \), \( \mathbf{w} \)

Нулевой вектор: \( \mathbf{0} \)

Координаты векторов: \( X \), \( Y \), \( Z \)

Действительные числа: \( \lambda \), \( \mu \)

Произведением вектора на число

Произведением вектора \( \mathbf{u} \ne \mathbf{0} \) на число \( \lambda \ne 0 \) называется вектор \( \mathbf{w} \), модуль которого равен \( \left| \lambda \right| \cdot \left| \mathbf{u} \right| \), направление которого совпадает с вектором \( \mathbf{u} \) при \( \lambda > 0 \) и противоположно ему при \( \lambda < 0 \)

\(\mathbf{w} = \lambda \mathbf{u},\;\;\left| \mathbf{w} \right| = \left| \lambda \right| \cdot \left| \mathbf{u} \right|\)

умножение вектора на число

Произведение вектора \( \mathbf{u} \) на число \( \lambda \) при \( \lambda = 0 \) и/или \( \mathbf{u} = \mathbf{0} \) равно нулевому вектору \( \mathbf{0} \).

Операция умножения вектора на число обладает следующими линейными свойствами :

Коммутативность умножения вектора на число  
\( \lambda \mathbf{u} = \mathbf{u}\lambda \)

Дистрибутивность умножения относительно сложения чисел  
\( \left( {\lambda + \mu } \right)\mathbf{u} = \lambda \mathbf{u} + \mu \mathbf{u} \)

Дистрибутивность умножения относительно сложения векторов  
\( \lambda \left( {\mathbf{u} + \mathbf{v}} \right) = \lambda \mathbf{u} + \lambda \mathbf{v} \)

Ассоциативность умножения вектора на число  
\( \lambda \left( {\mu \mathbf{u}} \right) = \mu \left( {\lambda \mathbf{u}} \right) = \left( {\lambda \mu } \right)\mathbf{u} \)

Умножение вектора на единицу  
\( 1 \cdot \mathbf{u} = \mathbf{u} \)

Умножение вектора на число в координатной форме  
\( \lambda \mathbf{u} = \left( {\lambda X,\lambda Y,\lambda Z} \right) \)

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: