Тангенс и котангенс. Формулы и определение
Помимо синуса и косинуса в тригонометрии имеется еще огромное количество функций, в частности, тангенс и котангенс, о котором мы поговорим на данном уроке.
Определение тангенса:
Тангенс tg(x) — это отношение синуса sin(x) к косинусу cos(x)
Формула тангенса:
Определение котангенса:
Котангенс ctg(x) — это отношение косинуса cos(x) к синусу sin(x).
Формула котангенса:
Определения для прямоугольного треугольника:
Тангенс острого угла в прямоугольном треугольнике — это отношение противолежащего катета к прилежащему.
Котангенс острого угла в прямоугольном треугольнике — это отношение прилежащего катета к противолежащему.
Определения для числа:
Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t, то есть, tg(t)=y/x.
Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t, то есть, ctg(t)=x/y.
Так как делить на ноль нельзя, то значения в знаменателе не может быть равным нулю, т.е.
, где
, где
Таблица знаков тангенса и котангенса по четвертям (составить ее можно, опираясь на таблицу синусов и косинусов, применяя правило деление чисел с отрицательными знаками):
I | II | III | IV | |
tg x | + | – | + | – |
ctg x | + | – | + | – |
Как видите, значения тангенса и котангенса очень просто найти, зная значения синуса и косинуса, тем не менее также существует таблица и для данных функций, которая существенно упрощает жизнь. Здесь я представлю самые распространенные значения. А для всех остальных значений существуют специальные таблицы Брадиса.
0 | |||||
tg x | 1 | – | 0 | ||
ctg x | 1 | 0 | – |
Завершая разговор про данные тригонометрические функции нельзя не сказать про еще две важные формулы:
Для любого допустимого значения х справедливы равенства:
Для любого допустимого значения х также справедливы следующие равенства:
Ну вот теперь вроде все, более подробно и углубленно изучать мы будем все функции в процессе дальнейшего обучения.