Числовые множества

Числа вида N = {1, 2, 3, ....} называются натуральными. Натуральные числа появились в связи с необходимостью подсчета предметов
  1. Если m, n, k - натуральные числа, то при m - n = k говорят, что m - уменьшаемое, n - вычитаемое, k - разность; при m : n = k говорят, что m - делимое, n - делитель, k - частное, число m называют также кратным числа n, а число n - делителем числа m, Если число m - кратное числа n, то существует натуральное число k, такое, что m = kn.
  2. Из чисел с помощью знаков арифметических действий и скобок составляются числовые выражения. Если в числовом выражении выполнить указанные действия, соблюдая принятый порядок, то получиться число, которое называется значением выражения.
  3. Порядок арифметических действий: сначала выполняются действия в скобках; внутри любых скобок сначала выполняют умножение и деление, а потом сложение и вычитание.
  4. Если натуральное число m не делится на натуральное число n, т.е. не существует такого натурального числа k, что m = kn, то рассматривают деление с остатком: m = np + r, где m - делимое, n - делитель (m>n), p - частное, r - остаток.
  5. Если число имеет только два делителя (само число и единица), то оно называется простым: если число имеет более двух делителей, то оно называется составным.
  6. Любое составное натуральное число можно разложить на простые множители, и только одним способом. При разложении чисел на простые множители используют признаки делимости.
  7. Для любых заданных натуральных чисел a и b можно найти наибольший общий делитель. Он обозначается D(a,b). Если числа a и b таковы, что D(a,b) = 1, то числа a и b называются взаимно простыми.
  8. Для любых заданных натуральных чисел a и b можно найти наименьшее общее кратное. Оно обозначается K(a,b). Любое общее кратное чисел a и b делится на K(a,b).
  9. Если числа a и b взаимно простые, т.е. D(a,b) = 1, то K(a,b) = ab .
Числа вида: Z = {… -3, -2, -1, 0, 1, 2, 3, ....} называются целыми числами, т.е. целые числа - это натуральные числа, числа, противоположные натуральным, и число 0.

Натуральные числа 1, 2, 3, 4, 5.... называют также положительными целыми числами. Числа -1, -2, -3, -4, -5, …,противоположные натуральным, называются отрицательными целыми числами.

Целые и дробные числа составляют множество рациональных чисел: \[Q=Z\cup\{\frac{m}{n}\} \], где m - целое число, а n - натуральное число.
  1. Среди дробей, обозначающих данное рациональное число, имеется одна и только одна несократимая дробь.Для целых чисел - это дробь со знаменателем 1.
  2. Каждое рациональное число представимо в виде конечной или бесконечной периодической десятичной дроби.
  3. Дробь \[\frac{m}{n}\] называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или раен ему.
  4. Всякую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби.
  5. Основное свойство дроби: если числитель и знаменатель данной дроби умножить на одно и то же натуральное число, то получится дробь, равная данной.
  6. Если числитель и знаменатель дроби взаимно простые числа, то дробь называется несократимой.
  7. В виде десятичной дроби можно записать правильную дробь, знаменатель которой равен степени с основанием 10. Если к десятичной дроби приписать справа нуль или несколько нулей, то получится равная ей дробь. Если десятичная дробь оканчивается одним или несколькими нулями, то эти нули можно отбросить - получиться равная ей дробь. Значимыми цифрами числа называются все его цифры, кроме нулей, стоящих в начале.
  8. Последовательно повторяющаяся группа цифр после запятой в десятичной записи числа называется периодом, а бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической. Если период начинается сразу после запятой, то дробь называется чистой периодической; если же между запятой м периодом есть другие десятичные знаки, то дробь называется смешанной периодической.
Числа не являющиеся целыми или дробными называются иррациональными.

Каждое иррациональное число представляется в виде непереодической бесконечной десятичной дробью

Множество всех конечных и бесконечных десятичных дробей называется множеством действительных чисел: рациональных и иррациональных


Читать по теме
Интересные статьи