Трапеция

Трапеция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого только одна пара противолежащих сторон параллельна.

Иногда трапеция определяется как четырёхугольник, у которого пара противолежащих сторон параллельна (про другую не уточняется), в этом случае параллелограмм является частным случаем трапеции. В частности, существует понятие криволинейная трапеция.

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон трапеции.

Элементы трапеции

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.

Виды трапеций

  • Трапеция, у которой боковые стороны равны, называется равнобедренной.
  • Трапеция, у которой один из углов "прямой", называется прямоугольной.

Основные свойства трапеции

В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

\[ AB + CD = BC + AD \]


Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

\[ AK = KB, AM = MC, BN = ND, CL = LD \]


Средняя линия трапеции параллельна основаниям и равна их полусумме:

\[ m = \dfrac{a + b}{2} \]


Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.


В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.


Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

\[ \dfrac{BC}{AD} = \dfrac{OC}{AO} = \dfrac{OB}{DO} \]


Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

\[ d_1^2 + d_2^2 = 2ab + c^2 + d^2 \]

Формулы длин сторон трапеции

Формула длины оснований трапеции через среднюю линию и другую основу:

\[ a = 2m - b , b = 2m - a \]


Формулы длины основ трапеции через высоту и углы при нижнем основании:

\[ a = b + h · (ctg \alpha + ctg \beta) , b = a - h · (ctg \alpha + ctg \beta)\]


Формулы длины основ трапеции через боковые стороны и углы при нижнем основании:

\[ a = b + c·cos \alpha + d·cos \beta, b = a - c·cos \alpha - d·cos \beta \]


Формулы боковых сторон трапеции через высоту и углы при нижнем основании:

\[ с = \dfrac{h}{sin \alpha } , d = \dfrac{h}{sin \beta } \]

Формулы длины средних линий трапеции

Формула определения длины средней линии через длины оснований:

\[ m = \dfrac{a + b}{2} \]


Формула определения длины средней линии через площадь и высоту:

\[ m = \dfrac{S}{h} \]

Формулы длины высоты трапеции

Формула высоты трапеции через сторону и прилегающий угол при основании:

\[ h = c·sin α = d·sin β \]


Формула высоты трапеции через диагонали и углы между ними:

\[ h = sin γ \cdot \dfrac{d_1\cdot d_2}{a + b} = sin δ \cdot \dfrac{d_1\cdot d_2}{a + b} \]


Формула высоты трапеции через диагонали, углы между ними и среднюю линию:

\[ h = sin γ \cdot \dfrac{d_1 \cdot d_2}{2m 2m} = sin δ · \dfrac{d_1}{d_2} \]


Формула высоты трапеции через площадь и длины оснований:

\[ h = \dfrac{2S}{a + b} \]


Формула высоты трапеции через площадь и длину средней линии:

\[ h = \dfrac{2S}{m} \]

Формулы длин диагоналей трапеции

Формулы длин диагоналей трапеции по теореме косинусов:

\[ d_1 = \sqrt{a^2 + d^2 - 2ad·cos β} \]

\[ d_2 = \sqrt{a^2 + c^2 - 2ac·cos β} \]


Формулы длин диагоналей трапеции через четыре стороны:

\[ d_1 = \sqrt{d^2 + ab - \dfrac{a(d^2 - c^2)}{a - b} } \]

\[ d_2 = \sqrt{c^2 + ab - \dfrac{ a(c^2 - d^2) }{a - b} } \]


Формулы длин диагоналей трапеции через высоту:

\[ d_1 = \sqrt{h^2 + (a - h · ctg β)^2} = \sqrt { h^2 + (b + h · ctg α)^2} \]

\[ d_2 = \sqrt{h^2 + (a - h · ctg α)^2} = \sqrt{h^2 + (b + h · ctg β)^2} \]


Формулы длин диагоналей трапеции через сумму квадратов диагоналей:

\[ d_1 = \sqrt{c^2 + d^2 + 2ab - d_2^2} \]

\[ d_2 = \sqrt{c^2 + d^2 + 2ab - d_1^2} \]

Формулы площади трапеции

Формула площади трапеции через основания и высоту:

\[ S = \dfrac{ (a + b) · h }{2} \]


Формула площади трапеции через среднюю линию и высоту:

\[ S = m · h \]


Формула площади трапеции через диагонали и угол между ними:

\[ S = \dfrac{d_1d_2}{2} · sin γ = \dfrac{d_1d_2}{2} · sin δ \]


Формула площади трапеции через четыре стороны:

\[ S = \dfrac{a + b}{2}\sqrt{c^2 - \left\lgroup\dfrac{(a - b)^2 + c^2 - d^2)}{2\cdot (a - b)} \right\rgroup ^2 } \]


Формула Герона для площади трапеции

\[ S = \frac{a + b}{\left|a-b\right| } \sqrt{(p - a)(p - b)(p - a - c)(p - a - d)} \]

где \( p = \dfrac{a + b + c + d}{2} \) - полупериметр трапеции.

Источник

Не можешь написать работу сам?

Доверь её нашим специалистам

50 000авторов
от 100 р.стоимость заказа
2 часамин. срок
Узнать стоимость
Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме
Интересные статьи