Круг и окружность
Круг — геометрическое место точек плоскости, равноудаленных от одной заданной точки, называемой центром круга. Расстояние от центра до любой точки окружности называется радиусом.
Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.
Общие определения
Окружность — это множество точек, которое располагается на одинаковом расстоянии от ее центра, представленного точкой.
Радиус Для любой точки OL=R. (Длина отрезка OL равняется радиусу окружности).
Хорда Отрезок, который соединяет две точки окружности, является ее хордой.
Диаметр Хорда, проходящая прямо через центр окружности, является диаметром этой окружности D=2R
Длина окружности Длина окружности вычисляется по формуле: C=2πR
Площадь круга Площадь круга: S=πR2
Дуга окружностиДугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD. Одинаковые хорды стягивают одинаковые дуги.
Центральный угол Центральным углом называется такой угол, который находится между двух радиусов.
Длину дуги можно найти по формуле:
- Используя градусную меру: CD=πRα∘180∘
- Используя радианную меру: CD=αR
Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.
В случае, если хорды AB и CD окружности имеют пересечение в точке N, то произведения отрезков хорд, разделенные точкой N, равны между собой.
AN⋅NB=CN⋅ND
Касательная к окружности
Касательная Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.
Секущая Если же у прямой есть две общие точки, ее называют секущей.
Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.
Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.
AC=CB
Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.
AC2=CD⋅BC
Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.
AC⋅BC=EC⋅DC
Углы в окружности
Градусные меры центрального угла и дуги, на которую тот опирается, равны.
∠COD=∪CD=α∘
Вписанный угол Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.
Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.
∠AOB=2∠ADB
Опирающийся на диаметр, вписанный угол, прямой.
∠CBD=∠CED=∠CAD=90∘
Вписанные углы, которые опираются на одну дугу, тождественны.
∠ADB=∠AEB=∠AFB
Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180∘.
∠ADB+∠AKB=180∘
∠ADB=∠AEB=∠AFB
На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.
Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.
∠DMC=∠ADM+∠DAM=12(∪DmC+∪AlB)
Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.
∠M=∠CBD−∠ACB=12(∪DmC−∪AlB)
Вписанная окружность
Вписанная окружность — это окружность, касающаяся сторон многоугольника.
В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.
Окружность может быть вписанной не в каждый многоугольник.
Площадь многоугольника с вписанной окружностью находится по формуле:
S=pr,
где:
p — полупериметр многоугольника,
r — радиус вписанной окружности.
Отсюда следует, что радиус вписанной окружности равен:
r=Sp
Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.
AB+DC=AD+BC
В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.
Радиус вписанной окружности вычисляется по формуле:
r=Sp,
где p=a+b+c2
Описанная окружность
Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника.
В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.
Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3-мя вершинами многоугольника.
Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180∘.
∠A+∠C=∠B+∠D=180∘
Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.
Радиус описанной окружности можно вычислить по формулам:
R=a2sinA=b2sinB=c2sinC
R=abc4S
где:
a, b, c — длины сторон треугольника,
S — площадь треугольника.
Теорема Птолемея
Под конец, рассмотрим теорему Птолемея.
Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.
AC⋅BD=AB⋅CD+BC⋅AD