Формула периметра равнобедренного треугольника

Периметр равнобедренного треугольника ABC, длины сторон которого соответственно равны: боковые стороны AB = BC = a, основание AC = b вычисляется по формуле:

Периметр равнобедренного треугольника вычисляется по формуле:

\( P_{\Delta ABC} = a + b + c = 2 \cdot a + b\)

где a,b,c – стороны равнобедренного треугольника.

То есть периметр треугольника равен сумме всех его сторон.
Периметр – это общая длина границ двумерной формы. Если вы хотите найти периметр треугольника, то вы должны сложить длины всех его сторон; если вы не знаете длину хотя бы одной стороны треугольника, необходимо найти ее.

Основные понятия, справедливые для треугольников

  • Сумма углов треугольника равна 180°.
  • Высота – это отрезок перпендикуляра, опущенного из вершины на противоположную сторону.
  • Центр описанной окружности лежит на пересечении медиатрис.
  • Медиатриса – это перпендикулярна прямая, проходящая через середину стороны.
  • Центр вписанной окружности лежит на пересечении биссектрис углов.
  • Биссектриса угла делит угол на две равные части.
  • Медиана – это отрезок, соединяющий вершину с серединой противоположной стороны.
  • Медианы пересекаются в центре тяжести, который делит каждую медиану в отношение 2:1.

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: