Формулы сокращенного умножения

Формулы сокращенного умножения

Алгебра

Формулы сокращенного умножения применяются для преобразования выражений. Тождества используются для представления целого выражения в виде многочлена и разложения многочленов на множители.

  • 1 Квадрат суммы (a + b) 2 = a 2 + 2ab + b 2
  • 2 Квадрат разности (a - b) 2 = a 2 - 2ab + b 2
  • 3 Разность квадратов a 2 - b 2 = (a - b)(a + b)
  • 4 Куб суммы (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 2
  • 5 Куб разности (a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 2
  • 6 Сумма кубов a 3 + b 3 = (a + b)(a 2 - ab + b 2 )
  • 7 Разность кубов a 3 - b 3 = (a - b)(a 2 + ab + b 2 )

Формулы для квадратов

\((a + b)^2 = a^2 + 2ab + b^2\)

\((a - b)^2 = a^2 - 2ab + b^2\)

\(a^2 - b^2 = (a + b)(a - b)\)

Формулы для кубов

\((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)

\((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\)

\(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)

\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)

Формулы для четвертой степени

\((a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)

\((a - b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4\)

\(a^4 - b^4 = (a - b)(a + b)(a^2 + b^2)\);
следует из \(a^2 - b^2 = (a + b)(a - b)\).

Преобразуйте выражение в многочлен (10 + 8k) 2

Пример 1

Разложим выражение на множители с помощью формулы квадрата суммы:

(a + b) 2 = a 2 + 2ab + b 2

(10 + 8k) 2 = 10 2 + 2×10×(8k) + (8k) 2 = 100 + 160k + 64k 2

Выполните умножение (5y - y 2 )(5y + y 2 )

Пример 2

Разложим выражение на множители с помощью формулы разности квадратов:

(a 2 - b 2 ) = (a - b)(a + b)

(5y - y 2 )(5y + y 2 ) = 25y 2 - y 4

Источник

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: