08-з. Действия и мощность тока
§ 08-з. Действия и мощность тока
Как можно узнать — есть ли в проводнике электрический ток? Заглянуть внутрь проводника невозможно, но, оказывается, это и не нужно. Прохождение тока по проводнику всегда сопровождается хотя бы одним из особых явлений — действий тока. Всего в физике и технике известно три действия тока: магнитное, химическое и тепловое. Рассмотрим их.
Слева вы видите опыт, иллюстрирующий магнитное действие тока. К источнику электроэнергии двумя проводами подключим катушку с проволокой и стальным стержнем внутри. При включении тока катушка станет магнитом и начнёт притягивать стальные предметы, например гвозди.
Магнитное действие тока наблюдается вокруг любых проводников: толстых или тонких, прямых или свитых в спираль, горячих или холодных, твёрдых, жидких или газообразных.
На этом рисунке показан опыт, иллюстрирующий химическое действие тока. В стакан с раствором сульфата меди CuSO4 опустим два угольных стержня. Через несколько минут на стержне, подключённом к «–», образуется тонкий слой ярко-красного цвета. Это чистая медь, выделившаяся из раствора. В опыте наблюдалась химическая реакция, вызванная электрическим током, в результате которой одно вещество (сульфат меди) превратилось в другое (чистую медь).
Химическое действие тока, как правило, наблюдается в жидких проводниках и сравнительно реже — в газообразных. В твёрдых проводниках химические реакции протекать не могут, так как в них отсутствуют подвижные ионы, являющиеся «носителями» химических свойств вещества.
Тепловое действие тока встречается, например, в утюгах, электрокаминах и лампах. Утюг горяч настолько, что нельзя притронуться рукой; спирали камина нагреты ещё сильнее: до «красного каления», а спираль лампочки — даже до «белого каления». Жидкие и газообразные проводники также нагреваются при прохождении через них тока.
Почему же проводники нагреваются? Рассмотрим металлический проводник. Ток в нём — это направленное движение электронов, которым приходится «течь» между ионами, постоянно наталкиваясь на них. При этом часть кинетической энергии электронов передаётся ионам, заставляя их колебаться сильнее, с большим размахом. А это и означает, что проводник нагревается. В жидких и газообразных проводниках движущиеся электроны и/или ионы наталкиваются на молекулы и/или атомы, «расшатывают» их, увеличивают их кинетическую энергию, что и означает возрастание температуры (см. § 7-в).
Итак, при наличии в проводнике тока происходит превращение электрической энергии (энергии зарядов в электрическом поле) в другие виды энергии, например внутреннюю. И скорость превращения электроэнергии можно выразить количественно. Для этого служит физическая величина мощность тока. О том, какими приборами её измеряют, мы поговорим в следующей теме, а пока приведём примеры токов различной мощности.
Возьмём три лампы с надписями: 40 Вт, 60 Вт и 75 Вт. Вкрутив их в люстру, мы обнаружим, что 75-ваттная лампа в каждый момент времени даёт явно больше тепла и света, чем лампа мощностью 40 Вт или 60 Вт. Другими словами, скорость превращения электроэнергии в тепловую и световую энергию в этих лампах различна.
Итак, мощность электротока — физическая величина, показывающая скорость превращения электроэнергии в другие виды энергии.
Вспомним, что 1 Вт = 1 Дж/с (см. § 5-в). Это значит, что при мощности тока 1 Вт энергия превращается со скоростью 1 джоуль в секунду. Тогда для тока мощностью 100 Вт это равно 100 Дж/с. Другими словами, лампа мощностью 75 Вт ежесекундно тратит 75 Дж электроэнергии и превращает их в тепло и свет.