Что такое ускорение?

Ускорение — физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения — равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с2, то это означает, что за каждую секунду скорость тела изменяется на 5 м/с, т. е. в 5 раз быстрее, чем при ускорении 1 м/с2.

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным.

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени — это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\( \lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени — это лимит его среднего ускорения при \( \Delta t \to 0 \). Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\( \vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \( \vec v = v\hat \tau \), где \( \hat \tau \) — орт касательной к траектории движения, то (в двухмерной системе координат):

\( \vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\( = \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\( = \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\( = \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\( = \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \),

где \( \theta \) — угол между вектором скорости и осью абсцисс; \( \hat n \) — орт перпендикуляра к скорости.

Таким образом,

\( \vec a = \vec a_{\tau} + \vec a_n \),

где \( \vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) — тангенциальное ускорение, \( \vec a_n = \dfrac {d\theta} {dt} v \hat n \) — нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \( \hat n \) — это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное — по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \( \omega = \dfrac v r \), где r — радиус кривизны траектории. В таком случае

\( a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: