Закон сложения скоростей

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени.

В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.

Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона

Закон сложения скоростей

Если тело движется относительно системы отсчета К1 со скоростью V1, а сама система отсчета К1 движется относительно другой системы отсчета К2 со скоростью V, то скорость тела (V2) относительно второй системы отсчета К2 равна геометрической сумме векторов V1 и V.

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета.

\( \vec{V_2} = \vec{V_1} + \vec{V} \)

где всегда
К2 - неподвижная система отсчета
V2 - скорость тела относительно неподвижной системы отсчета (К2)

К1 - подвижная система отсчета
V1 - скорость тела относительно подвижной системы отсчета (К1)

V - скорость подвижной системы отсчета (К1) относительно неподвижной системы отсчета (К2)

Преобразование координат и времени

Закон сложения скоростей является следствием преобразований координат и времени.

Пусть частица в момент времени t’ находится в точке (x’, y’, z’), а через малое время Δt’ в точке (x’ + Δx’, y’ + Δy’, z’ + Δz’) системы отсчета K’. Это два события в истории дви­жущейся частицы. Имеем:

Δx’ = vxΔt’,

где
vxx-я компонента скорости частицы в системе K’.

Аналогичные соотношения имеют место для остальных компонент.

Разности координат и промежутки времени (Δx, Δy, Δz, Δt) преобразуются так же, как координаты:

Δx = Δx’ + VΔt’,

Δy = Δу’,

Δz = Δz’,

Δt = Δt’.

Отсюда следует, что скорость той же частицы в системе K будет иметь компоненты:

vx = Δx / Δt = (Δx’ + VΔt’) / Δt = vx’ + V,

vy = vy’,

vz = vz’.

Это закон сложения скоростей. Его можно выразить в векторной форме:

v̅ = v̅’ + V

(координатные оси в системах K и K’ параллельны).

Закон сложения ускорений для поступательного движения

При поступательном движении тела относительно подвижной системы отсчёта и подвижной системы отсчёта относительно неподвижной, вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта $\overrightarrow{a}=\frac{d\overrightarrow{v}}{dt}=\ {\overrightarrow{a}}_{АБС}$ (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета ${\overrightarrow{a}}_r=\frac{d{\overrightarrow{v}}_r}{dt}={\overrightarrow{a}}_{ОТН}$ (относительного ускорения) и вектора ускорения подвижной системы отсчёта относительно неподвижной ${\overrightarrow{a}}_е=\frac{d{\overrightarrow{v}}_е}{dt}={\overrightarrow{a}}_{ПЕР}$ (переносного ускорения):

\[{\overrightarrow{a}}_{АБС}={\overrightarrow{a}}_{ОТН}+{\overrightarrow{a}}_{ПЕР}\]

В общем случае, когда движение материальной точки (тела) является криволинейным, его в каждый момент времени можно представить как комбинацию поступательного движения материальной точки (тела) относительно подвижной системы отсчёта со скоростью \( {\overrightarrow{v}}_r \), и вращательного движения подвижной системы отсчёта относительно неподвижной с угловой скоростью \( {\overrightarrow{\omega }}_e \). В этом случае, при сложении ускорений, наряду с относительным и переносным ускорением необходимо учитывать и ускорение Кориолиса \( a_c=2{\overrightarrow{\omega }}_e\times {\overrightarrow{v}}_r \), которое характеризует изменение относительной скорости, вызванное переносным движением, и изменение переносной скорости, вызванное относительным движением.

Теорема Кориолиса

Вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта \( \overrightarrow{a}=\frac{d\overrightarrow{v}}{dt}=\ {\overrightarrow{a}}_{АБС} \) (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета \( {\overrightarrow{a}}_r=\frac{d{\overrightarrow{v}}_r}{dt}={\overrightarrow{a}}_{ОТН} \) (относительного ускорения), вектора ускорения подвижной системы отсчёта относительно неподвижной \( {\overrightarrow{a}}_е=\frac{d{\overrightarrow{v}}_е}{dt}={\overrightarrow{a}}_{ПЕР} \) (переносного ускорения), и кориолисова ускорения \( a_c=2{\overrightarrow{{\mathbf \omega }}}_e\times {\overrightarrow{v}}_r={\overrightarrow{a}}_{КОР} \):

\[{\overrightarrow{a}}_{АБС}={\overrightarrow{a}}_{ОТН}+{\overrightarrow{a}}_{ПЕР}+{\overrightarrow{a}}_{КОР}\]

 

Абсолютное перемещение равно сумме относительного и переносного перемещений.

Перемещение тела в неподвижной системе отсчета равно сумме перемещений: тела в подвижной системе отсчета и самой подвижной системы отсчета относительно неподвижной.

Пример 1

Задача

Вторая капля оторвалась от крыши через несколько секунд после того, как оторвалась первая капля. Как движется вторая капля относительно первой? Сопротивлением воздуха пренебречь.

Решение

За неподвижную систему отсчёта возьмём землю, за подвижную систему отсчёта -- первую каплю, а за наблюдаемое тело -- вторую каплю. Отметим, что подвижная система отсчета движется поступательно. Поскольку сопротивлением воздуха пренебрегаем, то на каждую из капель будет действовать лишь одна сила тяжести, сообщающая каждой капле ускорение (относительно земли), равное ускорению свободного падения g. Следовательно, абсолютное ускорение (ускорение второй капли относительно земли) равно g, и переносное ускорение (ускорение первой капли относительно земли) также равно g. По закону сложения ускорений, относительное ускорение (ускорение второй капли относительно первой) равно нулю, значит, вторая капля движется равномерно относительно первой.

Ответ

вторая капля движется относительно первой равномерно.

Пример 2

Задача

Жесткий диск вращается с постоянной угловой скоростью $\overrightarrow{{\mathbf \omega }}$ вокруг оси, укрепленной на столе. По диску движется точка А с постоянной относительно стола скоростью $\overrightarrow{v}$. Определить скорость ${\overrightarrow{v}}_r$ и ускорение ${\overrightarrow{a}}_r$ частицы А относительно диска в момент, когда радиус-вектор, характеризующий ее положение по отношению к оси вращения, равен $\overrightarrow{{\mathbf \rho }}$.

Решение

Относительная скорость точки А $\ {\overrightarrow{v}}_r=\overrightarrow{v}-{\overrightarrow{{\mathbf \omega }}}_e\times \overrightarrow{{\mathbf \rho }}$.

Поскольку скорость точки $\overrightarrow{v}$ относительно стола постоянна, то её абсолютное движение равномерно, и $\overrightarrow{a}=0$

Отсюда

\[{\overrightarrow{a}}_r=-\left({\overrightarrow{a}}_e+{\overrightarrow{a}}_c\right)=-\left(2{\overrightarrow{{\mathbf \omega }}}_e\times {\overrightarrow{v}}_r+{{\mathbf \omega }}^2\overrightarrow{{\mathbf \rho }}\right)=2\overrightarrow{v}\times {\overrightarrow{{\mathbf \omega }}}_e-{{\mathbf \omega }}^2\overrightarrow{{\mathbf \rho }}\]

Пример 3

Задача

Запишите теорему сложения ускорений для поступательного движения материальной точки.

Решение

Ускорение Кориолиса определяется как:

\[ {\overline{a}}_k=2\left[{\overline{\omega }}_e{\overline{v}}_r\right] \]

Модуль $\left|{\overline{a}}_k\right|$ равен:

\[\left|{\overline{a}}_k\right|=2\left|{\overline{\omega }}_e\right|\left|{\overline{v}}_r\right|{\sin \alpha \ }\]

где $\alpha $ - угол между векторами ${\overline{\omega }}_e$ и ${\overline{v}}_r$.

Из выражения (2.2) следует, что ${\overline{a}}_k$=0, когда переносное движение является поступательным. В этом случае движение подвижной системы отсчета не имеет вращательной компоненты, переносная угловая скорость в любой момент времени равна нулю:

\[{\overline{\omega }}_e\equiv 0 ,\]

тогда в любой момент времени равно нулю ускорение Кориолиса. Теорема сложения ускорений принимает вид:

\[\overline{a}={\overline{a}}_e+{\overline{a}}_r .\]
Ответ

$\overline{a}={\overline{a}}_e+{\overline{a}}_r$

Интересные факты

  • Интересный фактАбсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, с которой её переносит пластинка за счёт своего вращения.
  • Интересный фактЕсли человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 — 5 = 45 километров в час, когда он идёт в обратном направлении.
  • Интересный фактЕсли человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 — 50 = 5 километров в час.
  • Интересный фактЕсли волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 — 30 = 0 километров в час, то есть они становятся неподвижными.

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

  • В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.
  • Ускорение, приобретенное телом в инерциальной системе отсчета, прямо пропорционально равнодействующей силе и обратно пропорционально массе тела.
  • Действие равно противодействию.
  • Все ИСО по своим механическим свойствам эквивалентны друг другу.

Интересные статьи: