Закон Гука

Закон Гука — уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke). Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

В словесной форме закон звучит следующим образом:

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации.

\[ \LARGE F = kx \]

Векторная формулировка закона Гука включает знак "минус", который говорит о том, что вектор деформации x всегда направлен противоположно силе упругости F:

\[ \LARGE F = -kx \]

Здесь \( F \) — сила растяжения или сжатия, \( x \) — абсолютное удлинение или сжатие, а \( k \) — коэффициент упругости (или жёсткости).

ВАЖНО Закон Гука справедлив только для упруго деформированных материалов.

Закон Гука

Красная линия на графике отображает изменение силы (F) в зависимости от положения в согласованности с законом Гука. Наклон соответствует постоянной пружины (k). Пунктирная линия – вид фактического графика силы. Изображения состояний пружины в нижней части отвечают некоторым точкам на графике (средняя – расслабленность)

Для тонкого растяжимого стержня закон Гука имеет вид:

\[ F = k \Delta l \]

Здесь \( F \) — сила, которой растягивают (сжимают) стержень, \( \Delta l \) — абсолютное удлинение (сжатие) стержня, а \( k \) — коэффициент упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения S и длины L) явно, записав коэффициент упругости как:

\[ k = \dfrac{ES}{L} \]

Величина E называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Если ввести относительное удлинение

\[ \varepsilon = \dfrac{\Delta l}{L} \]

и нормальное напряжение в поперечном сечении

\[ \sigma = \dfrac {F}{S} \]

то закон Гука в относительных единицах запишется как

\[ \sigma = E\varepsilon \]

В такой форме он справедлив для любых малых объёмов материала.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

\[ \Delta l = \dfrac{FL} {ES} \]

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Пример 1

Задача

К резиновому шнуру подвесили груз, под действием которого шнур растянулся на \( 4 \ \mathrm{см} \). Затем шнур сложили вдвое, закрепив сложенные концы вверху, а к середине снова подвесили тот же груз. На сколько шнур растянется во втором случае?

Решение

Если шнур в первом случае растянулся на \( 4\ \mathrm{см} \), то каждая половина шнура растянулась на \( 2\ \mathrm{см} \), а половины шнура были соединены между собой последовательно. Сила упругости внутри шнура везде одинакова и равна весу груза. Коэффициент жёсткости каждой половины можно представить в виде: \( k_2 = \dfrac{mg}{x_0/2} \)

Во втором случае половинки шнура соединены между собой параллельно, следовательно, условие равновесия груза теперь выглядит так:

\( mg = 2\cdot k_2x_2, \)

откуда

\( x_2 = \dfrac{mg}{2k_2} = \frac{mg}{2\dfrac{mg}{x_0/2}} = \dfrac{x_0}{4} = 1\ \mathrm{см}.\)

Ответ

\( 1\ \mathrm{см}.\)

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

  • Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.
  • Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними.
  • Парциальное давление каждого газа, входящего в состав смеси, это давление, которое создавалось бы той же массой данного газа, если он будет занимать весь объем смеси при той же температуре.
  • Давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.
  • Между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки

Интересные статьи: