Уравнения с одной переменной
На предыдущих занятиях мы знакомились с выражениями, а также учились их упрощать и вычислять. Теперь переходим к более сложному и интересному, а именно к уравнениям.
Уравнение и его корни
Равенство, содержащие переменную (-ые) называются уравнениями. Решить уравнение, значит найти значение переменной, при котором равенство будет верным. Значение переменной называют корнем уравнения.
Уравнения могут иметь, как один корень, так и несколько или вообще ни одного.
При решении уравнений используются следующие свойства:
- если в уравнении перенести слагаемое из одной части уравнения в другую, поменяв при этом знак на противоположный, то получится уравнение равносильное данному.
- если обе части уравнения умножить или разделить на одно и тоже число, то получится уравнение равносильное данному.
Пример №1 Какие из чисел: -2, -1, 0, 2, 3 являются корнями уравнения:
\( x^2=10-3x \)
Чтобы решить данное задание необходимо просто поочередно подставить вместо переменной x каждое из чисел и выделить те числа, при которых равенство считается верным.
При «х= -2»:
\( (-2)^2=10-3 \cdot (-2) \)
\( 4=4 \) — равенство верное, значит (-2) — корень нашего уравнения
При «х= -1»
\( (-1)^2=10-3 \cdot (-1) \)
\( 1=7 \) — равенство неверное, поэтому (-1) — не является корнем уравнения
При «х=0»
\( 0^2=10-3 \cdot 0 \)
\( 0=10 \) — равенство неверное, поэтому 0 не является корнем уравнения
При «x=2»
\( 2^2=10-3 \cdot 2 \)
\( 4=4 \) — равенство верное, значит 2 — корень нашего уравнения
При «х=3»
\( 3^2=10-3 \cdot 3 \)
\( 9=1 \) — равенство неверное, поэтому 3 не является корнем уравнения
Ответ: из представленных чисел, корнями уравнения \( x^2=10-3x \) являются числа -2 и 2.
Линейное уравнение с одной переменной
Линейное уравнение с одной переменной — это уравнения вида ax = b, где x — переменная, а a и b — некоторые числа.
Существует большое количество видов уравнений, но решение многих из них сводится именно к решению линейных уравнений, поэтому знание этой темы обязательно для дальнейшего обучения!
Пример №2 Решить уравнение: 4(x+7) = 3-x
Для решения данного уравнения, в первую очередь, нужно избавиться от скобки, а для этого домножим на 4 каждое из слагаемых в скобке, получаем:
4х + 28 = 3 — х
Теперь нужно перенести все значения с «х» в одну сторону, а все остальное в другую сторону (не забывая менять знак на противоположный), получаем:
4х + х = 3 — 28
Теперь вычитаем значение слева и справа:
5х = -25
Чтобы найти неизвестный множитель (х) нужно произведение (25) разделить на известный множитель (5):
х = -25:5
х = -5
Ответ х = -5
Если сомневаетесь в ответе можно проверить, подставив полученное значение в наше уравнение вместо х:
4(-5+7) = 3-(-5)
4*2 = 8
8 = 8 — уравнение решено верно!
Решить теперь что-нибудь по-сложнее:
Пример №3 Найти корни уравнения: \( (y+4)-(y-4)=6y \)
В первую очередь, также избавимся от скобок:
\( y+4-y+4=6y \)
Сразу видим в левой части y и -y, а значит их можно просто вычеркнуть, а полученные числа просто сложить, и записать выражение:
\( 8 = 6y \)
Теперь можно перенести значения с «y» в левую сторону, а значения с числами в правую. Но ведь это не обязательно, ведь не важно с какой стороны находятся переменные, главное, чтобы они были без чисел, а значит, ничего переносить не будем. Но для тех кто не понял, то сделаем, как гласит правило и разделим обе части на (-1), как гласит свойство:
\( 6y=8 \)
Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель:
\( y=\frac{8}{6} = \frac{4}{3} = 1\frac{1}{3} \)
Ответ: y = \( 1\frac{1}{3} \)
Также можно проверить ответ, но сделайте это самостоятельно.
Пример №4 \( (0,5x+1,2)-(3,6-4,5x)=(4,8-0,3x)+(10,5x+0,6) \)
Теперь я просто решу, без объяснений, а вы посмотрите на ход решения и правильную запись решения уравнений:
\( (0,5x+1,2)-(3,6-4,5x)=(4,8-0,3x)+(10,5x+0,6) \)
\( 0,5x+1,2-3,6+4,5x=4,8-0,3x+10,5x+0,6 \)
\( 0,5x+4,5x+0,3x-10,5x=4,8+0,6-1,2+3,6 \)
\( -5,2x=7,8 \)
\( x=\frac{7,8}{-5,2}=\frac{3}{-2} =-1,5 \)
Ответ: x = -1,5
Если что-то не понятно по ходу решения пишите в комментариях
Решение задач с помощью уравнений
Зная что такое уравнения и научившись их вычислять — вы также открываете себе доступ к решению множества задач, где для решения используются именно уравнения.
Не буду вдаваться в теорию, лучше показать все и сразу на примерах
Пример №5 В корзине было в 2 раза меньше яблок, чем в ящике. После того, как из корзины переложили в ящик 10 яблок, в ящике их стало в 5 раз больше, чем в корзине. Сколько яблок было в корзине, а сколько в ящике?
В первую очередь нужно определить, что мы примем за «х», в данной задаче можно принять и ящики, и корзины, но я возьму яблоки в корзине.
Значит, пусть в корзине было x яблок, так как в ящике яблок было в два раза больше, то возьмем это за 2х. После того, как из корзины яблоки переложили в ящик в корзине яблок стало: х — 10, а значит, в ящике стало — (2х + 10) яблок.
Теперь можно составить уравнение:
5(х-10) — в ящике стало в 5 раз больше яблок, чем в корзине.
Приравняем первое значение и второе:
2x+10 = 5(x-10) и решаем:
2х + 10 = 5х — 50
2х — 5х = -50 — 10
-3х = -60
х = -60/-3 = 20 (яблок) — в корзине
Теперь, зная сколько яблок было в корзине, найдем сколько яблок было в ящике — так как их было в два раза больше, то просто результат умножим на 2:
2*20 = 40 (яблок) — в ящике
Ответ: в ящике — 40 яблок, а в корзине — 20 яблок.
Я понимаю, что многие из вас, возможно, не до конца разобрались в решении задач, но уверяю к этой теме мы вернемся и еще не раз на наших уроках, а пока если у вас остались вопросы — задавайте их в комментариях.
Под конец еще несколько примеров на решения уравнений
Пример №6 \( 2x - 0,7x = 0 \)
\( 1,3x = 0 \)
\( x=0/1,3 \)
\( x = 0 \)
Пример №7 \( 3p - 1 -(p+3) = 1 \)
\( 3p-1-p-3=1 \)
\( 3p-p=1+1+3 \)
\( 2p=5 \)
\( p=5/2 \)
\( p=2,5 \)
Пример №8 \( 6y-(y-1) = 4+5y \)
\( 6y-y+1=4+5y \)
\( 6y-y-5y=4-1 \)
\( 0y=3 \) — корней нет, т.к. на ноль делить нельзя!
Всем спасибо за внимание. Если что-то непонятно спрашивайте в комментариях.