Первый закон термодинамики

Определение первого закона термодинамики (4 формулировки):

Энергия не может быть создана или уничтожена (закон сохранения энергии), она лишь переходит из одного вида в другой в различных физических процессах. Отсюда следует, что внутренняя энергия изолированной системы остается неизменной.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе и не зависит от способа, которым осуществляется этот переход.

Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Первый закон термодинамики в математическом виде:

\[ \Delta Q=\Delta U+A\ \qquad (1), \]

где \( \Delta Q \) – количество теплоты, которое получает термодинамическая система; \( \Delta U \) – изменение внутренней энергии рассматриваемой системы; A – работа, которую выполняет система над внешними телами (против внешних сил).

Первый закон термодинамики в дифференциальном виде:

\[ \delta Q=dU+\delta A\ \qquad (2), \]

где \( \delta Q \) – элемент количества теплоты, который получает система; \( \delta A \) – бесконечно малая работа, которую выполняет термодинамическая система; dU – элементарное изменение внутренней энергии, рассматриваемой системы. Следует обратить внимание на то, что в формуле (2) dU – элементарное изменение внутренней энергии является полным дифференциалом, в отличие от \( \delta Q \) и \( \delta A \).

Количество теплоты считают положительным, если система тепло получает и отрицательным, если тепло отводится от термодинамической системы. Работа будет больше нуля, если ее совершает система, и работа будет считаться отрицательной, если она совершается над системой внешними силами.

В то случае, если система вернулась в первоначальное состояние, то изменение ее внутренней энергии будет равно нулю:

\[\Delta U=0\ \qquad (3)\]

В таком случае в соответствии с первым законом термодинамики мы имеем:

\[\Delta Q=A\ \qquad (4)\]

Выражение (4) означает, что невозможен вечный двигатель первого рода. То есть, принципиально нельзя создать периодически действующую систему (тепловой двигатель), совершающую работу, которая была бы больше, чем количество теплоты, полученное системой извне. Положение о невозможности вечного двигателя первого рода, также является одним из вариантов формулировки первого закона термодинамики.

Первый закон термодинами гласит, что энергия не может быть создана или уничтожена. Таким образом, энергия системы (замкнутой) - постоянна. Тем не менее, энергия может быть передана от одного элемента системы другому. Рассмотрим замкнутую систему, изолированную от остальных.

Передача энергии между различными подсистемами в ней может быть описана как :

E1 = E2

где: E1 = начальная энергия, E2 = конечная энергия

Внутрення энергия включает :

  • Кинетическую энергию движения атомов
  • Потенциальную энергию хранящуюся в химических связях
  • Гравитационную энергию системы

Первый закон является основой для термодинамической науки и инженерного анализа.

Базируется на возможных типах обмена (энергии), ниже приведены 3 типа систем:

  • пред - изолированные системы (isolated systems): отсутствует обмен элементами системы или энергией
  • закрытые системы (closed systems): отсутствует обмен элементами системы, но присутствует некоторый обмен энергией
  • открытые системы (open systems): возможен обмен как элементами системы, так и энергией

Первый закон термодинамики помогает использовать ключевые концепции внутренней энергии (internal energy), тепла (heat), и работы системы (system work). которые широко используются в описании тепловых систем (heat engines).

  • Внутренняя энергия ( Internal Energy) - Внутренняя энергия определяется как энергия случайных, находящихся в неупорядченном движении молекул. Энергия молекул находится в диапазоне от высокой, необходимой для движения, до заметной лишь с помощью микроскопа энергии на молекулярном или атомном уровне. Например, у стакана с водой комнатной температы, стоящего на столе нет, на первый взгляд, никакой энергии: ни кинетической, ни потенциальной относительно стола. Но, с помощью микроскопа становится заметна "бурлящая" масса быстро двигающихся молекул. Если выплеснуть воду из стакана, эта микроскопическая энергия не обязательно заметно изменится, когда мы усредним добавленную кинетическую энергию на все молекулы воды.
  • Тепло - Тепло может быть определено, как энергия, передаваемая от объекта с более высокой температурой к объекту с менее высокой температурой. Сам по себе объект не обладает "теплом"; соответствующий термин для микроскопической энергии объекта - внутренняя энергия. Внутренняя энергия может увеличиваться путем переноса энергии к объекту от объекта, имеющего температуру выше - этот процесс называется нагревом.
  • Работа - Когда работа совершается термодинамической системой (чаще всего это газ, который совершает работу), то работа совершенная газом при постоянном давлении определяется как : W = p dV, где W - работа, p - давление, а dV -изменение объема.
    В случаях когда давление не является постоянным, работа может быть представлена интегральным образом, как площадь поверхности под кривой в координатах давление, объем, которые представляют происходящий процесс.

Изменение внутренней энергии системы равно теплу (добавленному системе) минус работа, совершенная системой

dE = Q - W

где: dE - изменение внутренней энергии, Q - добавленное тепло, W - работа системы

1й закон не дает информации о характере процесса и не определяет конечного состояния равновесия. Интуитивно мы понимаем, что энергия переходит от объекта с более высокой температурой к объекту с менее высокой температурой. Таким образом, 2й закон нам нужен для получения информации о характере процесса.

Энтальпия

Энтальпия это термодинамический потенциал, используемый в химической термодинамике реакций и не циклических процессов, однозначная функция состояния термодинамической системы при независимых параметрах энтропии и давления, связана с внутренней энергией соотношением, приведенным ниже. Это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия определяется как:

H = U + PV

где: H - энтальпия, U - внутренняя энергия, P - давление, V - объем системы

При постоянном давлении изменение энтальпии равно количеству теплоты, подведенной к системе, поэтому энтальпию часто называют тепловой функцией или теплосодержанием. В состоянии термодинамического равновесия энтальпия системы минимальна.

Энтальпия является точно измеряемым параметром, когда определены способы выражения трех других поддающихся точному определению параметров формулы выше.

Энтропия

Термин "энтропия" - величина, характеризующая степень неопределенности системы.

Однако, в термодинамике это понятие используется для определения связанной энергии системы. Энтропия определяет способность одной системы влиять на другую. Когда объекты пересекают нижнюю границу энергетического уровня необходимого для воздействия на окружающую среду, энтропия возрастает.Энтропия связана со вторым законом термодинамики.

Энтропия (обычно обозначается S), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы.

в символьном виде записывается, как

dS=(dQ)/T

где: dS - изменение термодинамической системы, dQ - количество теплоты, сообщенное системе, T - термодинамическая температура системы

Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна (закон неубывания энтропии).

Для вселенной в целом энтропия возрастает.

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

  • если при постоянной темпе­ратуре происходит термодинамический про­цесс, вследствие которого газ переходит из одного состояния (p1 и V1) в другое (p2 и V2), то произведение давления на объем данной массы газа при постоянной температуре яв­ляется постоянным: pV = const.
  • В равных объемах газов (V) при одинаковых условиях (температуре Т и давлении Р) содержится одинаковое число молекул.
  • При неизменном объеме отношение давления данной массы газа к его абсолютной температуре есть величина постоянная.
  • Невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу.
  • При постоянном давлении относительное изменение объема газа данной массы прямо пропорционально изменению тем­пературы:

Интересные статьи: