Евклид

О жизни этого ученого почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд.

Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенный под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из тринадцати книг, построенных по единой логической схеме. Каждая из тринадцати книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

В то время развитие науки и не предполагало наличия методов практической математики. Книги I—IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII—IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах Х—ХІІ содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в Х книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.

«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием евклидовой геометрии. Она описывает метрические свойства пространства, которое современная наука называет евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.

Бесконечность пространства характеризуется тремя постулатами:

«От всякой точки до всякой точки можно провести прямую линию».
«Ограниченную прямую можно непрерывно продолжить по прямой».
«Из всякого центра и всяким раствором может быть описан круг».

Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства евклидова пространства и его геометрию, отличную от неевклидовых геометрий.

Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалась как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6—7 изданий. До XX века книга считалась основным учебником по геометрии не только для школ, но и для университетов.

«Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом

Евклиду принадлежат частично сохранившиеся, частично реконструированные в дальнейшем математические сочинения. Именно он ввел алгоритм для получения наибольшего общего делителя двух произвольно взятых натуральных чисел и алгоритм, названный «счетом Эратосфена», — для нахождения простых чисел от данного числа.

Евклид заложил основы геометрической оптики, изложенные им в сочинениях «Оптика» и «Катоптрика». Основное понятие геометрической оптики — прямолинейный световой луч. Евклид утверждал, что световой луч исходит из глаза (теория зрительных лучей), что для геометрических построений не имеет существенного значения. Он знает закон отражения и фокусирующее действие вогнутого сферического зеркала, хотя точного положения фокуса определить еще не может. Во всяком случае в истории физики имя Евклида как основателя геометрической оптики заняло надлежащее место.

У Евклида мы встречаем также описание монохорда — однострунного прибора для определения высоты тона струны и ее частей. Полагают, что монохорд придумал Пифагор, а Евклид только описал его («Деление канона», III век до нашей эры).

Евклид со свойственной ему страстью занялся числительной системой интервальных соотношений. Изобретение монохорда имело значение для развития музыки. Постепенно вместо одной струны стали использоваться две или три. Так было положено начало созданию клавишных инструментов, сначала клавесина, потом пианино, А первопричиной появления этих музыкальных инструментов стала математика.

Конечно, все особенности евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.

В трудах Евклида дано систематическое изложение т. н. евклидовой геометрии, система аксиом которой опирается на следующие основные понятия: точка, прямая, плоскость, движение и следующие отношения: «точка лежит на прямой на плоскости», «точка лежит между двумя другими». В современном изложении систему аксиом евклидовой геометрии разбивают на следующие пять групп.

I. Аксиомы сочетания:

  • Через каждые две точки можно провести прямую и притом только одну.
  • На каждой прямой лежат по крайней мере две точки. Существуют хотя бы три точки, не лежащие на одной прямой.
  • Через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну.
  • На каждой плоскости есть по крайней мере три точки и существуют хотя бы четыре точки, не лежащие в одной плоскости.
  • Если две точки данной прямой лежат на данной плоскости, то и сама прямая лежит на этой плоскости.
  • Если две плоскости имеют общую точку, то они имеют ещё одну общую точку (и, следовательно, общую прямую).

II. Аксиомы порядка:

  • Если точка В лежит между А и С, то все три лежат на одной прямой.
  • Для каждых точек А, В существует такая точка С, что В лежит между А и С.
  • Из трёх точек прямой только одна лежит между двумя другими.
  • Если прямая пересекает одну сторону треугольника, то она пересекает ещё другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; соответственно определяются стороны треугольника).

III. Аксиомы движения:

  • Движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям.
  • Два последовательных движения дают опять движение, и для всякого движения есть обратное.
  • Если даны точки А, A' и полуплоскости a, a', ограниченные продолженными полупрямыми а, а', которые исходят из точек А, A', то существует движение, и притом единственное, переводящее А, а, a в A', a', a' (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).

IV. Аксиомы непрерывности:

  • Аксиома Архимеда: всякий отрезок можно перекрыть любым отрезком, откладывая его на первом достаточное число раз (откладывание отрезка осуществляется движением).
  • Аксиома Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.

V. Аксиома параллельности Евклида:

  • Через точку А вне прямой а в плоскости, проходящей через А и а, можно провести лишь одну прямую, не пересекающую а.

 

Возникновение евклидовой геометрии тесно связано с наглядными представлениями об окружающем нас мире (прямые линии — натянутые нити, лучи света и т. п.).

Евклид. Интересные факты

  • Интересный факт Точное место и дата рождения Евклида неизвестны. По дошедшим до нас сведениям удалось установить лишь то, что он родился в третьем веке до нашей эры где-то в Древней Греции.
  • Интересный факт Обучением Евклида занимался другой, не менее великий и известный человек — Платон.
  • Интересный факт Евклид прославился своим научным трудом, названным «Начала». Что интересно, труды с таким названием существовали и до, и после него, но известность обрела именно его книга.
  • Интересный факт Строгие логические выводы — то, на чём основаны «Начала». Евклид всё подчинял именно логике.
  • Интересный факт Множество принадлежащих перу неизвестных авторов трудов приписывается Евклиду, но точных доказательств тому нет.
  • Интересный факт Евклид способствовал открытию музея и библиотеке в городе Александрия. В его время они использовались не только по прямому назначению, но и в качестве научных центров.
  • Интересный факт Изложенные в «Началах» геометрические принципы не утратили актуальности и по сей день.

Евклид. Известные цитаты

Интересный факт

Если теорему так и не смогли доказать, она становится аксиомой.

Евклид
Интересный факт

При некоторых необычных и весьма таинственных обстоятельствах отдельные четные числа ведут себя как нечетные.

Евклид
Интересный факт

То, что принято без доказательств, может быть отвергнуто без доказательств. (доказательство)

Евклид
Интересный факт

Что и требовалось доказать. (доказательство)

Евклид
Интересный факт

Для тирана и для могущественного города, господствующего над другими городами, все, что выгодно, то и разумно. (тирания)

Евклид
Интересный факт

Нет царского пути к геометрии. (ответ Евклида египетскому царю Птолемею I, просившему указать более легкий путь изучения геометрии)

Евклид
Интересный факт

- Что бы ты предпочел: два целых яблока или четыре половинки? - спросили у Евклида. - Конечно, четыре половинки, - ответил тот. - А почему, ведь это одно и то же? - Отнюдь. Выбирая два целых яблока, как я узнаю, червивые они или нет?

Евклид

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: