14-ж. Формула тонкой линзы

      § 14-ж. Формула тонкой линзы

Установим соответствие между геометрическим и алгебраическим способами описания характеристик изображений, даваемых линзами. Сделаем чертёж по рисунку со статуэткой в предыдущем параграфе.

Поясним наши обозначения. Фигура AB – статуэтка, которая находится на расстоянии d от тонкой собирающей линзы с центром в точке О. Правее располагают экран, на котором A'B' – изображение статуэтки, наблюдаемое на расстоянии f от центра линзы. Точками F обозначены главные фокусы, а точками 2F – двойные фокусные расстояния.

Рис. 14.25. Геометрический способ определения изображения, даваемого собирающей линзой.

Почему мы построили лучи именно так? От головы статуэтки параллельно главной оптической оси идёт луч BC, который при прохождении линзы преломляется и проходит через её главный фокус F, создавая луч CB'. Каждая точка предмета испускает множество лучей. Однако при этом луч BO, идущий через центр линзы, сохраняет направление из-за симметрии линзы. Пересечение преломлённого луча и луча, сохранившего направление, даёт точку, где будет изображение головы статуэтки. Луч AO, проходящий через точку О и сохраняющий своё направление, позволяет нам понять положение точки A', где будет изображение ног статуэтки – на пересечении с вертикальной линией от головы.

Предлагаем вам самостоятельно доказать подобие треугольников OAB и OA'B', а также OFC и FA'B'. Из подобия двух пар треугольников, а также из равенства OC=AB, имеем:

Последняя формула предсказывает соотношение между фокусным расстоянием собирающей линзы, расстоянием от предмета до линзы и расстоянием от линзы до точки наблюдения изображения, в которой оно будет отчётливым. Чтобы эта формула была применима и для рассевающей линзы, вводят физическую величину оптическая сила линзы.

Поскольку фокус собирающей линзы всегда действительный, а фокус рассеивающей линзы всегда мнимый, оптическую силу определяют так:

Другими словами, оптическая сила линзы равна обратному значению её фокусного расстояния, взятому с «+», если линза собирающая, и взятому с «–», если линза рассеивающая. Единица оптической силы – диоптрия (1 дптр = 1/м). С учётом введённого обозначения получим:

Форм. 14.26. Формула тонкой линзы.

Это равенство называют формулой тонкой линзы. Опыты по её проверке показывают, что она справедлива только в том случае, если линза относительно тонкая, то есть её толщина в средней части мала по сравнению с расстояниями d и f. Кроме того, если изображение, даваемое линзой, мнимое, перед величиной f необходимо использовать знак «–».

Задача. Линзу с оптической силой 2,5 дптр поместили на расстоянии 0,5 м от ярко освещённого предмета. На каком расстоянии следует поместить экран, чтобы увидеть на нём чёткое изображение предмета?

Решение. Поскольку оптическая сила линзы положительна, следовательно, линза является собирающей. Определим её фокусное расстояние:

F = 1/D = 1 : 2,5 дптр = 0,4 м,   что больше, чем F.

Поскольку F , линза даст действительное изображение, то есть его можно увидеть на экране (см. таблицу § 14-е). Вычисляем:

Ответ: экран необходимо поместить на расстоянии 2х метров от линзы. Примечание: задача решена алгебраически, однако мы получим тот же результат и геометрическим путём, приложив к чертежу линейку.

Источник

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Читать по теме:

Интересные статьи: